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Abstract

A new set of finite element formulations are presented in this paper to model surface diffusion, grain-boundary

diffusion, grain-boundary migration and their interaction. The new formulations use the classical cubic splines both to

represent material interface and to act as shape functions for the migration velocity of the interface. The smoothness of

the interface is enforced such that the second order derivatives of the migration velocity is continuous anywhere on the

interface. This is achieved by using the cubic spline shape functions and by introducing two new Lagrange terms in the

variational principle. The work presented here is a new development to the finite element scheme which was previously

developed by Pan, Cocks and their co-workers [Comput. Mater. Sci. 18 (2000) 76; Comput. Mater. Sci. 1 (1993) 95; Acta

Mater. 43 (1995) 1395; Proc. Roy. Soc. London A 453 (1997) 2161] for modelling microstructural evolution of materials.

The cubic spline elements provide a numerically efficient alternative to the linear elements used by Pan et al. [Proc. Roy.

Soc. London A 453 (1997) 2161]. The finite element formulations are verified using a series of test cases for which

analytical solutions exist in the literature. A further demonstration case of the co-sintering of two particles of different

sizes is provided. The new finite element scheme has made it possible to carry out computer simulations of micro-

structural evolution using sophisticated and more realistic material models than ever before. The over-simplifications in

various existing material models can lead to incorrect predictions. This is dramatically demonstrated in a separate paper

in which the finite element scheme is used to investigate the sintering behaviour of large pores [Mech. Mater. (2003)].

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In a series of previous works, Pan, Cocks and their co-workers [11,16–18] developed a set of finite el-

ement formulations to model microstructural evolution of materials at elevated temperatures. Solid-state
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diffusion and grain-boundary migration were considered as the underlying mechanisms for the evolution.

The finite element scheme has been used to study a range of material behaviour including creep failure of

engineering alloys [6], superplasticity [16] and sintering of powder compacts [11,20]. These numerical
studies have helped to improve our understanding of materials behaviour at elevated temperatures [8,15].

Similar efforts have been made by Suo and co-workers [21–23], Zhang, Schneibel and co-workers [24,25]

and some recent progress in particular on modelling surface diffusion can be found in [1,2,13].

In all the previous works by Pan, Cocks and their co-workers, the material interfaces (grain-boundaries

and free surfaces) were represented by a series of straight elements and a linear distribution of the interfacial

velocity was assumed over each element. These linear elements are numerically effective but computa-

tionally inefficient, which became apparent as they were used to model problems on large scales. Recently

Cocks and Gill [5] used the classical cubic spline to model grain-growth. In this paper we further develop
their concept and present a set of cubic spline finite elements to model grain-boundary diffusion, surface

diffusion and grain-boundary migration, respectively. The grain-boundaries and free surfaces are repre-

sented using cubic splines and the same cubic splines are also used as the shape functions for the migration

velocity of the interfaces. Similar to the higher-order elements in the classical finite element method, the

cubic spline elements make it possible to use only a few elements to represent a grain-boundary or a free

surface. Unlike the ordinary high-order elements, however, we also enforce the smoothness of the interfaces

by introducing two new Lagrange multipliers in the variational principle which force the first and second

derivatives of the migration velocity to be continuous across all the finite element nodes on each interface.
This filters out any high frequency oscillation during the time integration and accelerates the numerical

solution dramatically.

The cubic spline elements are tested using a series of numerical examples for which analytical solutions

exist in the literature. As a demonstration example, the finite element scheme is used to numerically sim-

ulate the co-sintering process of two cylindrical particles of different sizes in which grain-boundary diffu-

sion, surface diffusion and grain-boundary migration are strongly coupled. The cubic spline formulations,

combined with a time integration algorithm, form a numerical technique for computer simulation of

morphological evolution at the level of grain size in porous polycrystalline materials. The numerical scheme
has made it possible to study the microstructural evolution in polycrystalline materials at an unprecedented

scale. This is demonstrated in a separate paper in which the numerical scheme is used to study the sintering

behaviour of large pores which are embedded in a matrix of irregular grains [19].
2. The modified variational principle

We consider a two-dimensional system consisting of a grain-boundary network, Cgb, intersected by
internal and/or external free surfaces, Cs. Fig. 1 shows a small part of the microstructure which consists of

two grains, a grain-boundary and two free surfaces.

Along part of the external boundary of the system, CF, an external distributed force F is applied. The

total potential energy E of the system is

E ¼
Z
Cgb

cgb dCþ
Z
Cs

cs dC�
Z
CF

F �U dC; ð1Þ

where cgb and cs are specific energies for grain-boundary and free surface, respectively, and U is the dis-

placement of CF with respect to a reference configuration. The system evolves to reduce E. The grains are
assumed to be rigid and only three processes that dissipate energy are considered: grain-boundary diffusion,

surface diffusion and grain-boundarymigration. The diffusive flux, defined as volume of matter flowing along

the interface across unit slab thickness of the interface per unit time, is referred to as jgb for grain-boundary
diffusion and js for surface diffusion. The migrating velocity of a grain-boundary is referred to as tm.
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Fig. 1. A small part of the microstructure considered in this paper. The interfaces are discretised using the degrees of freedom shown in

the figure which include: ts, the migration velocity of a free surface; tm, the migration velocity of a grain-boundary; tgb, the separation
velocity of a grain-boundary due to grain-boundary diffusion; u1, v1, x1, u2, v2, x2 the translational and rotational velocities of the two

grains defined at C1 and C2, respectively; js and jgb, the diffusive fluxes along the free surface and grain-boundary respectively; ks and
kgb, the Lagrange multipliers to force the continuity of the diffusive fluxes along the surface and grain-boundary, respectively; kt0s and
kt00s the Lagrange multipliers to force the continuity of the first and second derivatives of surface migration velocity; kt0m and kt00m the

Lagrange multipliers to force the continuity of the first and second derivatives of grain-boundary migration velocity and ktip the

Lagrange multiplier to force matter conservation at the triple junction.
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The evolution of the grain-boundaries and free surfaces is governed by a variational principle, that is,

among all the possible diffusive fluxes and migration velocities which satisfy matter conservation, the true

fluxes and velocities make a functional P minimum,

P ¼
Z
Cgb

1

2Mgb

j2gb dCþ
Z
Cs

1

2Ms

j2s dCþ
Z
Cgb

1

2Mm

t2m dCþ dE
dt

; ð2Þ

where Mgb, Ms and Mm are the mobilities associated with grain-boundary diffusion, surface diffusion and

grain-boundary migration, respectively. Needleman and Rice [14] developed the original version of this

variational principle. They considered grain-boundary diffusion and power law creep. Suo and Wang [23],

Cocks and Gill [5], Cocks [4] and Pan et al. [18] later extended it to include surface diffusion, lattice diffusion

and grain-boundary migration. These authors have shown that dP ¼ 0 leads to the linear kinetic laws for

the three processes, respectively [9,10]:

jgb ¼ Mgb

or
os

; ð3Þ
js ¼ Ms

oðcsjsÞ
os

ð4Þ

and

vm ¼ Mmcgbjgb; ð5Þ

in which r is the stress normal to the grain-boundary, js and jgb are the principal curvatures of the free

surface and grain-boundary, respectively, and s is a local co-ordinate along either a grain-boundary or a free
surface. Apart from the three kinetic laws, dP ¼ 0 also leads to the equilibrium between the grain-boundary

stresses, the surface tension and the externally applied forces, and the equilibrium between the interfacial
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tensions at all the junctions between the interfaces. Usual boundary conditions for diffusive fluxes, applied

forces and boundary velocities have to be specified to fully define the problem mathematically.

When constructing numerical solutions, it is often difficult to satisfy matter conservation everywhere.
Cocks [3] introduced a Lagrange term,

P
kjð

P
jÞ, to enforce matter conservation in the variational sense

where it is violated. The outer summation is over all the locations where matter conservation is violated and

the inner summation is over all the fluxes flowing into such a location. This has been proven to be a very

effective technique in the previous work by Pan, Cocks and their co-workers [3–5,11,17,18]. Here, we extend

this technique further to enforce the smoothness of the migrating velocity of an interface in the numerical

solution. As mentioned in Section 1, it is desirable to develop a high-order element so that fewer elements

can be used and the interface can evolve in a smooth manner. However, simply using a high-order shape

function in each element can lead to oscillation of the numerical solution. We therefore introduce two more
Lagrange terms in the variational principle to enforce the continuity of the first and second derivatives of

the migrating velocity across all the finite element nodes on a single grain-boundary or free surface. The

modified functional P� is given by

P� ¼
Z
Cgb

1

2Mgb

j2gb dCþ
Z
Cs

1

2Ms

j2s dCþ
Z
Cgb

1

2Mm

t2m dCþ dE
dt

þ
X

kj
X

j
� �

þ
X

kt0
X

t0
� �

þ
X

kt00
X

t00
� �

; ð6Þ

in which t represents the migrating velocity of the interface, t0 and t00 the first and second derivatives of t
with respect to the local coordinates along the interface, and kt0 and kt00 the Lagrange multipliers at any

junction of two connecting elements except for the triple junctions. The outer summations of the two new

terms are over all the finite element nodes expect for the triple grain-boundary junctions and where the

grain-boundaries meet the free surfaces. The inner summations are over the two joining elements. In the

later sections, the migrating velocity of the interface will be referred to as ts for the free surface, and tm for
the grain-boundary. The two newly-introduced Lagrange terms guarantee the smoothness of the interface

as it evolves and are consistent with the cubic spline shape functions used to represent the migration ve-

locity which will be introduced in Sections 4 and 5.
3. Representing an interface using cubic spline elements

As shown in Fig. 2, an interface can be represented using the classical cubic spline. The interface is
divided into n elements. For the jth element we have

xj ¼ axj þ bxj S
�

� Sj
�
þ cxj S

�
� Sj

�2 þ dxj S
�

� Sj
�3 ð7Þ

and

yj ¼ ayj þ byj S
�

� Sj
�
þ cyj S

�
� Sj

�2 þ dyj S
�

� Sj
�3
; ð8Þ

in which aj, bj, cj and dj are the cubic spline coefficients for element j, and S is a curvilinear coordinate

along the interface with its origin at the left end of the interface.

Fig. 3 shows an isolated element. The global coordinates of the two nodes of the element are referred to
as x1;j; y1;j and x2;j; y2;j. For each element, a non-dimensionalised local coordinate f is introduced as shown in

the figure. The origin of f is located at the mid-point of the element and it is normalised by the half-length

of the element, Sej , so that f ¼ �1 at the left node and f ¼ 1 at the right node. Replacing the global co-

ordinate by the local coordinate f, we have
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Fig. 3. The local coordinate system of an isolated element.
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Fig. 2. Representing an interface using cubic spline elements, where S is a local coordinate along the interface. Note that there are n
intervals and nþ 1 data points.
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S � Sj ¼ Sejð1þ fÞ: ð9Þ

It is obvious that axj ¼ x1;j and ayj ¼ y1;j. Furthermore, bxj and byj can be expressed as

bxj ¼
1

2Sej
x2;j �

1

2Sej
x1;j � 2Sej cxj � 4S2

ej
dxj

and

byj ¼
1

2Sej
y2;j �

1

2Sej
y1;j � 2Sej cyj � 4S2

ej
dyj ;

respectively. By substituting the above expressions for axj , ayj , bxj , byj and (S � Sj) into Eqs. (7) and (8), the

cubic spline equations of the interface element can be re-written into a typical finite element format as

following:

xjðfÞ ¼ ½N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ�

x1;j
x2;j
cxj
dxj

2
664

3
775 ð10Þ

and

yjðfÞ ¼ ½N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ�

y1;j
y2;j
cxj
dxj

2
664

3
775; ð11Þ
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in which N1ðfÞ, N2ðfÞ, N3ðfÞ and N4ðfÞ are the shape functions, which are given by

N1ðfÞ ¼ 1
2
ð1� fÞ;

N2ðfÞ ¼ 1
2
ð1þ fÞ;

N3ðfÞ ¼ S2
ej
ðf2 � 1Þ;

N4ðfÞ ¼ S3
ej
½ð1þ fÞ3 � 4ð1þ fÞ�:

9>>>=
>>>;

ð12Þ

The parameters cxj ; cyj and dxj ; dyj can be uniquely determined from the nodal coordinates using the classical

cubic spline procedure by enforcing the continuity of the first and the second derivatives of x and y with

respect to S across all the nodes and by considering the end conditions at both ends of the interface.
4. A cubic spline element for surface diffusion

For surface diffusion, the surface migrates in the direction normal to the surface as matter is removed
from or added to a particular part of the surface by the diffusion process. Let ts represent the migration

velocity, which is taken as positive if the surface migrates toward the space, and js represent the diffusive

flux along the surface. Matter conservation requires that

ojs
oS

þ ts ¼ 0; ð13Þ

in which S is the same local coordinate along the surface used in the previous section.

For each element, we express the migration velocity ts in terms of the same shape functions as those used

for the surface itself in the previous section, i.e., we assume

tsðfÞ ¼ N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ½ �

ts;1
ts;2
cts
dts

2
664

3
775; ð14Þ

in which ts;1 and ts;2 are the two nodal velocities at the two ends of the element, cts and dts are the cubic

spline coefficients for ts, and N1ðfÞ, N2ðfÞ, N3ðfÞ and N4ðfÞ are the shape functions defined by Eq. (12). ts;1,
ts;2, cts and dts are the unknown degrees of freedom of the free surface element (Fig. 4).
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Fig. 4. A surface diffusion element showing all the degrees of freedom.
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From Eq. (13), we have

jsðfÞ ¼ �Se

Z f

0

tsðfÞdfþ js;0; ð15Þ

where js;0 is the diffusive flux across the origin of the local coordinate. Substituting Eq. (14) into Eq. (15), we

obtain

jsðfÞ ¼ w1ðfÞ w2ðfÞ w3ðfÞ w4ðfÞ 1½ �

ts;1
ts;2
cts
dts
js;0

2
66664

3
77775; ð16Þ

in which

w1ðfÞ ¼ � Se
2

f� 1
2
f2

� �
;

w2ðfÞ ¼ � Se
2

fþ 1
2
f2

� �
;

w3ðfÞ ¼ �S3
e

1
3
f3 � f

� �
;

w4ðfÞ ¼ �S4
e

1
4
1þ fð Þ4 � 2f2 � 4f

h i
:

9>>>>=
>>>>;

ð17Þ

The contribution of the surface element to the functional P� can be calculated by substituting expression

(16) into the corresponding term in functional P� given by Eq. (6):

Z
Ce

1

2Ms

j2s dC ¼ Se
2Ms

Z 1

�1

j2s ðfÞdf ¼
1

2
ts;1 ts;2 cts dts js;0½ � Ks½ �

ts;1
ts;2
cts
dts
js;0

2
66664

3
77775; ð18Þ

where ½Ks� is a 5� 5 viscosity matrix for surface diffusion. The detailed expression for ½Ks� can be found in

Appendix A.

At each node, matter conservation for the diffusive flux is not guaranteed by expression (16). In the
numerical solution, the matter conservation is enforced by the corresponding Lagrange multiplier term in

the variational principle. Furthermore, the continuity of the first and second derivatives of the velocity

across each node is enforced by two newly introduced Lagrange terms as explained in Section 2. The

contribution of each element to the three Lagrange terms of the functional P� can be written as

1

2
kt0s;2 kt0s;1 kt00s ;2 kt00s ;1 kj;2 kj;1
h i

t0sð1Þ
�t0sð�1Þ
t00s ð1Þ

�t00s ð�1Þ
jsð1Þ

�jsð�1Þ

2
6666664

3
7777775
¼ 1

2
kt0s;2 kt0s;1 kt00s ;2 kt00s ;1 kj;2 kj;1
h i

Cs½ �

ts;1
ts;2
cts
dts
js;0

2
66664

3
77775; ð19Þ

where ½Cs� is a 6�5 complementary matrix. The detailed elements in ½Cs� are given in Appendix A. The total

contribution of the current element to the functional, P�, can be combined into the following form:

1

2
ts;1 ts;2 cts dts js;0 kt0s;2 kt0s;1 kt00s ;2 kt00s ;1 kj;2 kj;1
h i ½Ks� ½Cs�T

½Cs� 0

� � ts;1
..
.

kj;1

2
64

3
75 ¼ 1

2
Us½ �T As½ � Us½ �; ð20Þ
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in which ½Us� is the vector of elemental unknowns and ½As� is the generalised viscosity matrix of the element

under consideration.

The contribution from the current element to the term dE=dt of the functional P� can be calculated as

Secs

Z 1

�1

jsðfÞ N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ½ �

ts;1
ts;2
cts
dts

2
664

3
775

8>><
>>:

9>>=
>>;

df ¼ Fs½ �

ts;1
ts;2
cts
dts

2
664

3
775; ð21Þ

in which cs is the specific free surface energy and js is the curvature of the local element which can be

calculated from Eqs. (7) and (8),

js ¼
_x€y � _y€x

_x2 þ _y2
� �3=2

; ð22Þ

where a dot represents d=dS. ½Fs� is referred to as the elementary force matrix for surface diffusion. Gauss

quadrature integration is used to integrate the complicated expression in Eq. (21) to obtain ½Fs�.
The contribution from a surface element to the function P� can now be combined as

1

2
Us½ �T As½ � Us½ � þ Fs½ �

ts;1
ts;2
cts
dts

2
664

3
775; ð23Þ

where a free surface meets a grain-boundary, the above equations are not valid for two reasons. The first is

that the velocity of the triple point, as shown in Fig. 5 is no longer normal to any of the interfaces joining

the junction. At this junction, the equilibrium condition between the surface and grain-boundary tensions

leads to a discontinuity in the normal to the surface. Both the magnitude and the direction of the velocity of

the junction have to be determined from the numerical solution. The second reason is that it is inappro-

priate to force the continuity of the first and second derivatives of the migration velocity at the triple

junction, hence the two newly introduced Lagrange multiplier terms do not apply to the junction.
υsy,1 

υsx,1 

υs,2 

ζ 

λj,1 

λj,2 

λυs',2 

λυs",2 
 js 

cυs    dυs 

1,sn

Fig. 5. A special surface diffusion element which joins a grain-boundary at its left end. Both the direction and magnitude of the velocity

of the triple junction have to be determined from the finite element solution. The variational principle guarantees the balance of the

interfacial tensions at the triple point so that the correct dihedral angle is maintained by the numerical solution of the velocities of the

three elements joining at the triple point.
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We decompose the velocity of the triple junction into its x- and y-components in the global coordinate

system and refer to them as tsx and tsy , respectively. Fig. 5 shows a special surface diffusion element located

at the right side of a triple junction. The migration velocity of the special element can then be written as

tsðfÞ ¼ nsx ;1N1ðfÞ nsy ;1N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ
� �

tsx;1
tsy ;1
ts;2
cts
dts

2
66664

3
77775; ð24Þ

in which nsx;1 and nsy ;1 are the x- and y-components of the normal n
*
s;1 at the left end of the special element;

N1ðfÞ, N2ðfÞ, N3ðfÞ and N4ðfÞ are the shape functions given by Eq. (12). Following the similar procedure

used for the normal surface element, we obtain the contribution from the special surface diffusion element

to the functional P� as

1

2
tsx;1 tsy ;1 ts;2 cts dts js;0 kt0s;2 kt00s ;2 kj;2 kj;1
h i

K�
s

� �
C�

s

� �T
C�

s

� �
0

� � tsx ;1
..
.

kj;1

2
64

3
75 ¼ 1

2
U �

s

� �T
A�
s

� �
U �

s

� �
; ð25Þ

in which ½U �
s � and ½A�

s � are the vector of unknowns and the generalised viscosity matrix, respectively, of the
special element. ½K�

s � and ½C�
s � are the 6� 6 viscosity matrix and 4� 6 complementary matrix for the special

element, respectively. The details of these two matrixes are provided in Appendix A.

The contribution of the special element to dE=dt of the functional P� is

Secs

Z 1

�1

jsðfÞ nsx;1N1ðfÞ nsy ;1N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ
� �

tsx ;1
tsy ;1
ts;2
cts
dts

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

df ¼ F �
s

� �
tsx;1
tsy ;1
ts;2
cts
dts

2
66664

3
77775; ð26Þ

in which ½F �
s � is the force matrix of the special element. The total contribution to the functional P� from all

the free surfaces is the summation of Eq. (23) for all the ordinary surface elements and Eqs. (25) and (26)

for all the special elements which meet the grain-boundaries.
5. A cubic spline element for grain-boundary migration

The finite element formulation for grain-boundary migration is similar to that for surface diffusion. A

grain-boundary is represented by a set of cubic spline elements. Considering an isolated grain-boundary
migration element shown in Fig. 6, the migration velocity of the grain-boundary, tm, can be expressed in

terms of the same cubic spline shape functions used for surface diffusion:

tmðfÞ ¼ N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ½ �

tm;1

tm;2

ctm
dtm

2
664

3
775; ð27Þ

in which ctm and dtm are the cubic spline coefficients; tm;1 and tm;2 are the migration velocities of the two

nodes; and N1ðfÞ, N2ðfÞ, N3ðfÞ and N4ðfÞ are the shape functions given by Eq. (12). The contribution of the

current element to the functional P� is then



υm,2 

υm,1 ζ 

1,mn
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Fig. 6. A grain-boundary migration element showing all the degrees of freedom.
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Z
Ce

1

2Mm

t2m dC ¼ Se
2Mm

Z 1

�1

t2mðfÞdf ¼
1

2
tm;1 tm;2 ctm dtm½ � Km½ �

tm;1

tm;2

ctm
dtm

2
664

3
775; ð28Þ

where ½Km� is a 4� 4 viscosity matrix for grain-boundary migration. The details of ½Km� are provided in

Appendix A.

The continuity of the first and second derivatives of the migration velocity is enforced by using Lagrange

multipliers, kt0m and kt00m. The contribution of each element to the Lagrange terms of functional P� is

1

2
kt0m;2 kt0m;1 kt00m ;2 kt00m;1
h i t0mð1Þ

�t0mð�1Þ
t00mð1Þ

�t00mð�1Þ

2
664

3
775 ¼ 1

2
kt0m;2 kt0m;1 kt00m;2 kt00m;1
h i

Cm½ �

tm;1

tm;2

ctm
dtm

2
664

3
775; ð29Þ

where ½Cm� is a 4�4 complementary matrix. The details of ½Cm� are given in Appendix A.

The contribution from the current element to the term dE=dt of the functional P� is simply

Secgb

Z 1

�1

jgbðfÞ N1ðfÞ N2ðfÞ N3ðfÞ N4ðfÞ½ �

tm;1

tm;2

ctm
dtm

2
664

3
775

8>><
>>:

9>>=
>>;

df ¼ Fm½ �

tm;1

tm;2

ctm
dtm

2
664

3
775; ð30Þ

where jgb is the curvature of the grain-boundary and cgb is the specific grain-boundary energy. [Fm] is re-
ferred to as the elementary force matrix for grain-boundary migration.

Combining Eqs. (28)–(30) gives the contribution of current element to the functional P� which is

1

2
½tm;1 tm;2 ctm dtm kt0m;2 kt0m;1 kt00m ;2 kt00m;1�

½Km� ½Cm�T
½Cm� 0

� � tm;1

..

.

kt00m;1

2
64

3
75þ ½Fm�

tm;1

tm;2

ctm
dtm

2
664

3
775

¼ 1

2
½Um�T½Am�½Um� þ ½Fm�

tm;1

tm;2

ctm
dtm

2
664

3
775; ð31Þ
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in which [Um] is the vector of element unknowns and [Am] is the generalised viscosity matrix for the element

under consideration.

Likewise, Eqs. (30) and (31) are not valid where the grain-boundary meets either other grain-boundaries
or a free surface. Fig. 7 shows an example where a grain-boundary meets a pore surface. Once again, we

decompose the migration velocity of the junction into two components, tmx ;2 and tmy ;2. In fact, both of them

are not new but the same as tsx;1 and tsy ;1, which were introduced earlier while developing the special el-

ement for surface diffusion. The migration velocity, tm takes the similar form as Eq. (24),

tmðfÞ ¼ ½N1ðfÞ nmx ;2N2ðfÞ nmy ;2N2ðfÞ N3ðfÞ N4ðfÞ�

tm;1

tmx ;2

tmy ;2

ctm
dtm

2
66664

3
77775: ð32Þ

Following the similar procedure, we obtain the contribution of the special grain-boundary migration ele-

ment to the functional P� as

1

2
½tm;1 tmx;2 tmy ;2 ctm dtm kt0m;1 kt00m ;1�

½K�
m� ½C�

m�
T

½C�
m� 0

� � tm;1

..

.

ktm ;1

2
64

3
75 ¼ 1

2
½U �

m�
T½A�

m�½U �
m�; ð33Þ

in which [U �
m] and [A�

m] are the vector of unknowns and the generalised viscosity matrix, respectively, for the

special element. [K�
m] and [C�

m] are the 5� 5 viscosity matrix and the 2� 5 complementary matrix from the

special element, respectively. The details of [K�
m� and [C�

m] can be found in Appendix A.

The contribution of the special element to dE=dt of the functional P� is given by

Secgb

Z 1

�1

jgbðfÞ½N1ðfÞ nmx ;2N2ðfÞ nmy ;2N2ðfÞ N3ðfÞ N4ðfÞ�

tm;1

tmx ;2

tmy ;2

ctm
dtm

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

df ¼ ½F �
m�

tm;1

tmx;2

tmy ;2

ctm
dtm

2
66664

3
77775; ð34Þ
υmy,2 
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υm,1 
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2,mn  
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Fig. 7. A special grain-boundary migration element joining a triple junction at its right end. Also see the note in the caption for Fig. 5.
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in which [F �
m] is the force matrix of the special element. The total contribution to the functional P� from all

the grain-boundaries is the summation of Eq. (31) for all the ordinary grain-boundary elements and Eqs.

(33) and (34) for all the special elements which meet either other grain-boundaries or a free surfaces.
6. A cubic spline element for grain-boundary diffusion

As atoms diffuse along a grain-boundary, matter is either removed from, or deposited onto, a particular

location of a grain-boundary. Such matter redistribution leads to stresses in the grains on either side of the

grain-boundary and causes deformation of the grains. The grains can deform either elastically [23] or

plastically [14] depending on the level of the stress and the time frame of the process. The elastic energy can
also contribute to the driving force for solid-state diffusion and become an important part of the problem

[23]. In a wide range of practical problems, however, the diffusion process can quickly release the stresses

caused by the deformation of the grains and the contribution to the driving force from the elastic energy

can be ignored. A �steady-state� stress distribution is developed in the grain-boundaries and the grains can

be considered as rigid. This is one of the basic assumptions of the current model which is valid for problems

like long-term creep under low level of stresses, superplastic deformation and free sintering of fine particles,

etc.

Under the rigid grain assumption, each grain has only three degrees of freedom to define its motion.
Fig. 8 illustrates the grain-boundary diffusion and the associate grain motion. The ‘‘centres’’ of the two

grains have been arbitrarily chosen as C1 at xc1 and yc1 , and C2 at xc2 and yc2 , where their translational

velocities, ui and vi, and the rotational velocity, wi, are defined, in which i ¼ 1, 2. The matter redistribution

along a grain-boundary results in either a separating or an approaching velocity, referred to as tgb, between
the two grains. tgb is taken as positive if the grains separate and the direction of tgb is always normal to the

grain-boundary. The separation velocity can be related to the velocities of two rigid grains in the following

form:

tgbðfÞ ¼ ½B1ðfÞ B2ðfÞ B3ðfÞ B4ðfÞ B5ðfÞ B6ðfÞ�

u1
v1
w1

u2
v2
w2

2
6666664

3
7777775
; ð35Þ

where

B1ðfÞ ¼ �ngb;x;

B2ðfÞ ¼ �ngb;y ;

B3ðfÞ ¼ ðyðfÞ � yc1Þngb;x � ðxðfÞ � xc1Þngb;y ;
B4ðfÞ ¼ ngb;x;

B5ðfÞ ¼ ngb;y ;

B6ðfÞ ¼ �ðyðfÞ � yc2Þngb;x þ ðxðfÞ � xc2Þngb;y ;

in which, as shown in Fig. 8, ngb;x and ngb;y are the x- and y-components of the normal to the grain-boundary

element and xðfÞ and yðfÞ are given by Eqs. (10) and (11), respectively.

Matter conservation requires that the separation velocity, tgb, and the diffusive flux, jgb, along the grain-
boundary satisfy the following relationship:



Fig. 8. A grain-boundary diffusion element showing all the degrees of freedom. The dashed lines show that the two grains move

relatively to each other as the consequence of matter being removed from the overlapping region to the gap region. A new grain-

boundary, shown by the solid line, is placed at the middle of the two dashed lines.
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tgb þ
ojgb
oS

¼ 0; ð36Þ

in which S is the local coordinate along the grain-boundary. Therefore, we have

jgbðfÞ ¼ �Se

Z f

0

tgbðfÞdfþ jgb;0; ð37Þ

in which jgb;0 is the diffusive flux across the origin of the grain-boundary element. Substituting Eq. (35) into

(37) gives

jgbðfÞ ¼ ½H1ðfÞ H2ðfÞ H3ðfÞ H4ðfÞ H5ðfÞ H6ðfÞ 1�

u1
v1
w1

u2
v2
w2

jgb;0

2
666666664

3
777777775
; ð38Þ
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where

H1ðfÞ ¼ �yðfÞ þ y0;
H2ðfÞ ¼ xðfÞ � x0;
H3ðfÞ ¼ � 1

2
ðy0 � yðfÞÞðy0 þ yðfÞ � 2yc1Þ

� 1
2
ðx0 � xðfÞÞðx0 þ xðfÞ � 2xc1Þ;

H4ðfÞ ¼ yðfÞ � y0;
H5ðfÞ ¼ �xðfÞ þ x0;
H6ðfÞ ¼ 1

2
ðy0 � yðfÞÞðy0 þ yðfÞ � 2yc2Þ

þ 1
2
ðx0 � xðfÞÞðx0 þ xðfÞ � 2xc2Þ;

9>>>>>>>>>>=
>>>>>>>>>>;

ð39Þ

in which x0 and y0 are the coordinates of origin of f located at the middle of the grain-boundary element.

The contribution of the grain-boundary diffusion element to the functional P� can be written as:

Z
Ce

1

2Mgb

j2gb dC ¼ Se
2Mgb

Z 1

�1

j2gbðfÞdf ¼
1

2
½u1 v1 w1 u2 v2 w2 jgb;0�½Kgb�

u1
v1
w1

u2
v2
w2

jgb;0

2
666666664

3
777777775
; ð40Þ

in which [Kgb] is a 7� 7 viscosity matrix for grain-boundary diffusion. Its detailed form is provided in

Appendix A.

Similar to free surface diffusion, a Lagrange multiplier, kgb is introduced at each node to enforce the

continuity of grain-boundary flux because it is not guaranteed by expression (38). The contribution of the

Lagrange terms from each grain-boundary element to the functional P� is then

1

2
½kgb;2 kgb;1�

jgbð1Þ
�jgbð�1Þ

� �
¼ 1

2
½kgb;2 kgb;1�½Cgb�

u1
v1
w1

u2
v2
w2

jgb;0

2
666666664

3
777777775
; ð41Þ

where [Cgb] is a 2� 7 complimentary matrix and provided in Appendix A. Eqs. (40) and (41) can be

combined into the following:

1

2
½u1 v1 w1 u2 v2 w2 jgb;0 kgb;2 kgb;1� ½Kgb� ½Cgb�T

½Cgb� 0

� �

u1
v1
w1

u2
v2
w2

jgb;0
kgb;2
kgb;1

2
6666666666664

3
7777777777775

¼ 1

2
½Ugb�T½Agb�½Ugb�; ð42Þ

in which [Ugb] is the vector of elementary unknowns and [Agb] is the generalised viscosity matrix for the grain-

boundary diffusion element. Where a grain-boundary meets either a free surface or other grain-boundaries,

matter conservation is guaranteed by the corresponding Lagrange term in the variational principle.
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7. Coupling, global equations and time integration

In the above sections, the functional P� has been discretised for surface diffusion, grain-boundary mi-
gration and grain-boundary diffusion, respectively. The three processes are strongly coupled. The grain-

boundary diffusion and surface diffusion are connected at all the junctions between the grain-boundary

network and free surfaces. The grain-boundary diffusion occurs as the boundaries migrate, and the grain-

boundary migration and surface migration share a common velocity where a grain-boundary meets a free

surface. All these coupling conditions are included in the variational principle. The balance of the inter-

facial tensions at any triple junction, which defines the angle at which the interfaces meet each other (the

dihedral angle), is also guaranteed by the variational principle. Therefore, the finite element solution for

the velocity of a triple junction and the velocities of the grain-boundaries and free surface in the vicinity of
the triple junction are such that the correct dihedral angle is maintained at each timestep. Furthermore, at a

junction between a grain-boundary and a free surface, there is an exchange of free energy as the grains

move relative to each other and the junction is relocated. This leads to an extra contribution to the force

term. A detailed treatment of the triple junction relating to the above issues has been provided by Pan et al.

[18] which does not depend on the type of the finite element and is not repeated here.

Collecting all the contributions together provides a discretised expression of P� in terms of all the de-

grees of freedom shown in Fig. 1:

P� ¼ 1

2
½U �T½A�½U � þ ½F �½U �; ð43Þ

where ½U � is the vector of global unknowns, which consists of ½Us�, ½Um� and ½Ugb�. It contains the velocities
of individual grains (two translational and one rotational for each grain), nodal migration velocities of

grain-boundaries and free surfaces, diffusive fluxes across the mid-points of surface and grain-boundary
diffusion elements, and Lagrange multipliers at every node. ½A� is the generalised global viscosity matrix

which is assembled from ½As�, ½Am� and ½Agb�. ½F � is the global force vector which is assembled from ½Fs�, ½Fm�
and ½Fgb�. The variational principle requires that dP� ¼ 0, which leads to

½A�½U � þ ½F � ¼ 0: ð44Þ

The above equations can be solved using a standard numerical solver.

The position of the entire network of grain-boundaries and free surfaces can then be updated using a

time integration scheme, the direct Euler method, for example. The updating procedure has been discussed

in detail in the previous papers by Pan, Cocks, and their co-workers [16–18]. All the procedures used
previously are valid here except for how to update the position of the grain-boundaries. The new position of

a grain-boundary is determined from the superposition of the contributions from the grain-boundary

migration and grain-boundary diffusion, respectively. At each timestep, the grain-boundary position is first

updated using the grain-boundary migration velocity which is straightforward. Subsequently the grain-

boundary position is updated again from the rigid motion of the grains (the order of these two updating

steps does not actually matter and can be swapped). As shown in Fig. 8, the new position of the grain-

boundary as the consequence of the matter redistribution (grain-boundary diffusion) should be between the

imaginary positions, illustrated using the two dashed lines, of the two grain-boundaries updated using the
velocities of the two grains. The actual position of the ‘‘new’’ grain-boundary should be such that it

minimises the total free energy within the constraint. Such a minimisation is, however, too complicated and

we simply average the positions of two updated boundaries to obtain a ‘‘new’’ cubic spline position for the

grain-boundary. At any triple junction, the ‘‘new’’ position of the triple junction is relocated at the average

positions of the three intersecting points between the three interfaces as shown in Fig. 9. These procedures

inevitably introduce small errors; however, any significant updating error is automatically corrected by the

finite element solution in the next timestep.



Interface 2 

Interface 3 

Interface 1 

“new” triple point position 

Fig. 9. Updating the triple junction. The three interfaces do not usually meet at one location after their positions are updated. The

problem is overcome by relocating the triple junction at the average position of the three joints between the three interfaces.
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8. Numerical examples

In this section, we present several numerical examples for which analytical solutions can be obtained.

The finite element formulations are first verified against the analytical solutions for surface diffusion, grain-
boundary migration and grain-boundary diffusion separately, and then against analytical solutions for the

coupled cases. Finally the finite element scheme is used to simulate numerically the co-sintering process of

two cylindrical particles of different sizes which involves all the three kinetic processes.
8.1. Surface diffusion

An isolated elliptical cavity in a solid material can evolve toward a circular one by surface diffusion in

order to reduce its total surface area. At t ¼ 0, analytical expressions for the surface diffusion flux, surface
migration velocity and Lagrange multiplier for the flux continuity can be obtained [18]. These analytical

solutions can be used to verify the cubic spline finite element formulation for surface diffusion presented in

Section 4. Fig. 10 shows the comparison between the finite element solutions and the analytical expressions.

Seven cubic spline elements are used for a quarter of the cavity. It can be seen that the finite element so-

lutions agree very well with the analytical expressions. Fig. 11 compares the finite element solution with a

finite difference solution for the temporal evolution of the cavity surface. In the finite difference solution

(solid lines), 100 nodes are used along a quarter of the cavity surface. In the finite element solution (discrete

dots), only three elements are used. It can be seen that the finite element formulation for surface diffusion
works very well.



Fig. 10. Comparison between the numerical and analytical solutions for the surface migration velocity, ts diffusive flux, js and

Lagrange multiplier, kj for the problem of diffusion along the free surface of an elliptical cavity. Seven cubic spline elements are used to

model a quarter of the cavity. In this example, a=b ¼ 2, Ms ¼ 1 and cs ¼ 1. The analytical and numerical solutions are represented by

solid lines and square boxes, respectively.

Fig. 11. Comparison between the finite element and finite difference solutions for the temporal evolution of the elliptical cavity.
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8.2. Grain-boundary migration

A circular grain embedded in a larger grain of identical material shrinks until it disappears with the

velocity:

dR
dt

¼ �Mmcgb
1

R
; ð45Þ
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in which R is the radius of the circular grain, Mm, the grain-boundary migration mobility and cgb, the
specific grain-boundary energy. This equation can be integrated to verify the cubic spline element for grain-

boundary migration presented in Section 5. Due to symmetry, we model a quarter of the circular grain
using three cubic spline elements. Fig. 12 presents the comparison between the finite element solution and

the analytical solution for the temporal evolution of the circular grain at two different times. It can be seen

that the two solutions agree very well.

8.3. Grain-boundary diffusion

The cubic spline element formulation for grain-boundary diffusion is verified using two numerical ex-

amples here. First, we consider a semi-circular grain-boundary as shown in Fig. 13. The two grains are
subjected to a remote force, F and the separation velocity between the two grains is referred to as u1. We

further impose the boundary conditions that the capillarity stress is zero where the grain-boundary meets

the two surfaces and that the diffusive flux, jgb is zero across the symmetry point (h ¼ 0�). The problem can

be solved analytically providing the following expressions for u1, jgb and the stress, r, normal to the grain-

boundary:
Fig. 12. Comparison between the finite element and analytical solutions for the boundary migration of a circular grain which is

embedded in a bigger grain of identical material.

FF

∞u∞u

σc = 0 

σc = 0

θ 

 jgb 

 jgb 

R 

Fig. 13. A semi-circular grain-boundary between two grains is subjected to a remote force F leading to a remote separation velocity of

u1 between the two grains.
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u1 ¼ 2Mgb

pR3
F ; ð46Þ
jgb ¼ �u1R sin h ð47Þ

and

r ¼ u1R2 cos h
Mgb

: ð48Þ

The same problem is solved using five equally spaced cubic spline elements presented in Section 6. No time

integration is undertaken because our purpose here is to verify the finite element formulation not the time

integration scheme. We use several sets of arbitrary input data in the numerical analysis. The finite element

solution agrees very well with the analytical solution for all the input data. For example, when using

Mgb ¼ 18, R ¼ 1 and F ¼ 9573, the finite element solution for u1 was 1.09754� 105 while Eq. (46) predicts
u1 ¼ 1:09698 � 105. Fig. 14 compares the finite element solution with Eqs. (47) and (48). It can be seen that

the two solutions agree very well with each other.

To verify the cubic spline element when the grains rotate, we consider a straight grain-boundary which is

subjected to a bending moment, M1, producing a relative angular velocity, x1, between the two grains as

shown in Fig. 15. We further impose the boundary condition that the capillarity stress where the grain-

boundary meets the two surfaces is zero. A straightforward analytical solution to this problem is obtained

and then the same problem is solved using five equally space cubic spline elements. Again a few sets of

arbitrary data of the material and geometry parameters are used in the test. In all the cases, the two so-
lutions agree with each other very well. For example, for M1 ¼ 55; 382, Mgb ¼ 23:5 and L ¼ 1, the ana-

lytical solution gives x1 ¼ 2:9283� 107 which can be compared to the finite element solution of

x1 ¼ 2:9283� 107. Fig. 16 presents the comparison of the two solutions for the diffusive flux and the grain-

boundary stress. The two solutions agree very well with each other.
Fig. 14. Comparison between the analytical and numerical solutions for the grain-boundary stress, r, and the diffusive flux, jgb for the
semi-circular grain-boundary shown in Fig. 13.



∞∞ ω,M

 σc = 0 

 σc = 0 

∞∞ ω,M  

z 

2L 

Grain2 Grain 1 

Fig. 15. A straight grain-boundary between two grains is subjected to a bending moment M1 leading to a relative rational velocity x1
between the two grains.

Fig. 16. Comparison between the analytical and numerical solutions for the grain-boundary stress, r, and the diffusive flux, jgb, for the
straight grain-boundary shown in Fig. 15.
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8.4. Coupled grain-boundary migration and surface diffusion

To verify the special elements for surface diffusion and grain-boundary migration, we consider a case of

thermal grooving at a migrating grain-boundary as shown in Fig. 17. Two infinitively long grains sit on a

single crystal substrate. The interface between the right grain and the substrate is assigned a higher specific
Fig. 17. Thermal grooving at a migrating grain-boundary – the initial geometry of a film of two grains, which sit on a substrate. The

initial finite element nodes are shown using the discrete symbols.



Fig. 18. Finite element simulation of the boundary migration in the film and thermal grooving at the top triple junction. In (b) the

finite element solution (solid lines) at �t ¼ 0:6045 is compared to the analytical solution (dashed lines) at the steady state which were

obtained by Mullins [12] and Suo [22].

744 H.N. Ch�ng, J. Pan / Journal of Computational Physics 196 (2004) 724–750
energy than that between the left grain and the substrate, i.e., csb1 > csb2 . The vertical grain-boundary

migrates to the right to reduce the total free energy of the system. At the same time, the junction between

the grain-boundary and the top surface grooves by surface diffusion.

Mullins [12] and Suo [22] obtained a set of steady-state solutions for this problem. Pan et al. [18] used their

analytical solutions to verify their linear elements. Here, we use the same analytical solutions to verify the
cubic spline elements. The finite element mesh at�t ¼ 0 is shown in Fig. 17 using the discrete symbols. As the

grain-boundary migrates to the right, frequent re-meshing has to be undertaken to continue the numerical

simulation. The numerical integration is carried out until a steady state is reached where it can be compared

to the analytical solutions. Again a few set of arbitrary input data of the material parameters are used, and for

all the cases the results from the analytical and finite element solutions agree with each other well at the steady

state. Fig. 18 presents the finite element solutions for cgb=cs ¼ 1, csb1=cs ¼ 1:5, csb2=cs ¼ 1, Mmh20=Ms ¼ 10:4.
Fig. 18(a) shows the numerical solution before the steady state is reached. Fig. 18(b) compares the finite

element solution (dashed lines) with the analytical solutions (solid lines) at the steady state. Furthermore, the
groove depth at the steady state, as defined in Fig. 18(b), is predicted as 0.204, 0.196 and 0.166 by the steady-

state analytical solution [12], the cubic spline elements and the linear elements [18], respectively.

8.5. Coupled grain-boundary and surface diffusion

To verify the Lagrange terms introduced in the variational principle which enforce the coupling con-

ditions between surface diffusion and grain-boundary diffusion, we consider a case of cavity growth at the

triple grain-boundary junctions in a hexagonal polycrystalline structure as shown in Fig. 19(a). Cocks and
Searle [7] obtained an analytical solution for the remote strain rates _e11 and _e12 at the extreme of fast surface

diffusion. Here, we use the cubic spline elements for a representative unit of the problem as shown by the

dashed line in Fig. 19(a) which is enlarged in Fig. 19(b) and calculate the remote strain rates for a range of

material parameters. The finite element nodes used in the model can also be clearly seen in Fig. 19(b).

Fig. 20 presents the finite element solution for _e11 as a function of the ratio between the surface diffusivity

over the grain-boundary diffusivity. The other parameters used in the numerical solution were r1 ¼ 0,

r2 ¼ 0, cs ¼ 1, cgb ¼ 0, R ¼ 30 and grain size, d ¼ 346:4102. From the figure, it can be seen that the finite

element solution approaches the equilibrium growth solution for fast surface diffusion as Ms=Mgb P 4. At
the extreme of fast surface diffusion, i.e., for Ms � Mgb, the finite element solution agrees well with Cocks



Fig. 20. Finite element solution of the remote strain rate in the horizontal direction for the problem shown in Fig. 19 as a function of

Ms=Mgb. No stress is applied hence the cavity sinters under the capillarity stress leading to the shrinkage of the material. The dashed line

is the analytical solution obtained by Cocks and Searle [7] who assumed fast surface diffusion, i.e., Ms � Mgb.
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Fig. 19. Cavity growth at triple grain-boundary junctions in a hexagonal polycrystalline structure. (b) The representative unit and the

nodal positions used in the finite element model.
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and Searle�s analytical solution [7]. It is interesting to notice that the analytical solution assuming equi-

librium growth works surprisingly well.

8.6. Co-sintering of two cylindrical particles of different sizes

To demonstrate the finite element scheme for a fully coupling process between grain-boundary diffusion,

surface diffusion and grain-boundary migration, we consider the co-sintering process of two cylindrical par-
ticles of two different sizes as shown in Fig. 21(a). At elevated temperatures atoms are transported from the

contact neck between the two particles to the triple junction through grain-boundary diffusion and taken away

from the junction and deposited onto the free surfaces through surface diffusion. This process is accompanied

by themigrationof the neck (grain-boundary) towards the smaller particle leading to grain-growth. Pan,Cocks

and their co-workers [17,20] were the first to study this problemusing a numericalmethod. Zhang et al. [25] also



Fig. 21. Computer simulated co-sintering process of two cylindrical particles of different sizes. All the three kinetic processes, i.e.,

grain-boundary diffusion, surface diffusion and grain-boundary migration, are modelled. (a) �t0 ¼ 0:0, (b) �t1 ¼ 3:423� 10�5,

(c) �t2 ¼ 1:558� 10�3 and (d) �t3 ¼ 3:109� 10�3. The ratio of the initial radii is R1=R2 ¼ 0:5. Ms=Mgb ¼ 10, MmR2
2=Mgb ¼ 100, cs=cgb ¼ 3.
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undertook detailed numerical studies of the same problem. However, Pan et al. assumed fast grain-boundary

migration in their model and Zhang et al. did not consider grain-boundary diffusion in their model. Using the

finite element scheme developed in this paper, we can for the first time consider the full coupling between all the
three kinetic processes. Figs. 21(b)–(d) present the numerical simulation of the co-sintering process. The fol-

lowing parameters were used in this example: R1=R2 ¼ 0:5, cs=cgb ¼ 3,Ms=Mgb ¼ 10 andMmR2
2=Mgb ¼ 100. An

important observation from these figures is that the time taken by the neck to become approximately equal to

the size of the smaller particle (at time �t1 shown in Fig. 21(b)) is a very tiny fraction of the entire co-sintering

process. This shows that the neck growth and grain-growth are almost two consecutive processes in the

sintering process. A large number of similar computer simulations have been carried out covering a wide range

of material parameters, which will be published in a forthcoming paper.
9. Concluding remarks

The cubic spline finite element formulations enforce the smoothness of the interface to the continuity of

second derivatives. Such a numerical approach filters out the high frequency oscillation of the interface

during their migration and focuses the numerical solution on the global evolution of the microstructure.

The numerical scheme has made it possible to model each interface using as little as three finite elements in

a complicated microstructure. This numerical advantage is fully exploited in a separate paper in which the
finite element scheme is used to investigate the sintering behaviour of large pores in particle compact [19].

There the numerical tool helped us to gain a deep insight into the material behaviour and some of the

classical textbook theory for sintering was shown to be inappropriate.
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Appendix A. Generalised viscosity matrixes for surface diffusion, grain-boundary migration and grain-

boundary diffusion

A.1. Generalised viscosity matrixes for surface diffusion
Ks½ � ¼

23
120

S3e
Ms

17
120

S3e
Ms

� 4
15

S5e
Ms

� 17
21

S6e
Ms

1
6

S2e
Ms

23
120

S3e
Ms

� 4
15

S5e
Ms

� 83
105

S6e
Ms

� 1
6

S2e
Ms

136
315

S7e
Ms

136
105

S8e
Ms

0

Symmetric 248
63

S9e
Ms

� 4
15

S5e
Ms

2 Se
Ms

2
66666664

3
77777775
;

Cs½ � ¼

� 1
2Se

1
2Se

2Se 8S2
e 0

1
2Se

� 1
2Se

2Se 4S2
e 0

0 0 2 12Se 0

0 0 �2 0 0
� 1

4
Se � 3

4
Se 2

3
S3
e 2S4

e 1

� 3 Se � 1 Se 2 S3 2S4 �1

2
6666664

3
7777775
:

4 4 3 e e
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A.2. Generalised viscosity matrixes for special element of surface diffusion
K�
s

� �
¼

23
120

S3e n
2
x

Ms

23
120

S3e nxny
Ms

17
120

S3e nx
Ms

� 4
15

S5e nx
Ms

� 17
21

S6e nx
Ms

1
6

S2e nx
Ms

23
120

S3e n
2
y

Ms

17
120

S3e ny
Ms

� 4
15

S5e ny
Ms

17
21

S6e ny
Ms

1
6

S2e ny
Ms

23
120

S3e
Ms

� 4
15

S5e
Ms

� 83
105

S6e
Ms

� 1
6

S2e
Ms

136
315

S7e
Ms

136
105

S8e
Ms

0

Symmetric 248
63

S9e
Ms

� 4
15

S5e
Ms

2 Se
Ms

2
66666666664

3
77777777775
;

C�
s

� �
¼

� nx
2Se

� ny
2Se

1
2Se

2Se 8S2
e 0

0 0 0 2 12Se 0

� 1
4
nxSe � 1

4
nySe � 3

4
Se 2

3
S3
e 2S4

e 1
� 3

4
nxSe � 3

4
nySe � 1

4
Se 2

3
S3
e 2S4

e �1

2
664

3
775:
A.3. Generalised viscosity matrixes for grain-boundary migration
Km½ � ¼

2
3

Se
Mm

1
3

Se
Mm

� 2
3

S3e
Mm

� 28
15

S4e
Mm

2
3

Se
Mm

� 2
3

S3e
Mm

� 32
15

S4e
Mm

16
15

S5e
Mm

16
5

S6e
Mm

Symmetric 1024
105

S7e
Mm

2
666664

3
777775
;

Cm½ � ¼

� 1
2Se

1
2Se

2Se 8S2
e

1
2Se

� 1
2Se

2Se 4S2
e

0 0 2 12Se
0 0 �2 0

2
664

3
775:
A.4. Generalised viscosity matrixes for special element of grain-boundary migration
K�
m

� �
¼

2
3

Se
Mm

1
3

Senx
Mm

1
3

Seny
Mm

� 2
3

S3e
Mm

� 28
15

S4e
Mm

2
3

Sen2x
Mm

2
3

Senxny
Mm

� 2
3

S3e nx
Mm

� 32
15

S4e nx
Mm

2
3

Sen2y
Mm

� 2
3

S3e ny
Mm

� 32
15

S4e
Mm

Symmetric 16
15

S5e
Mm

16
5

S6e
Mm

1024
105

S7e
Mm

2
66666664

3
77777775
;

C�
m

� �
¼

1
2Se

� nx
2Se

� ny
2Se

2Se 4S2
e

0 0 0 �2 0

� �
:
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A.5. Generalised viscosity matrixes for grain-boundary diffusion
½Kgb� ¼
Se
Mgb

Z 1

�1

H1H1 H1H2 H1H3 H1H4 H1H5 H1H6 H1

H2H2 H2H3 H2H4 H2H5 H2H6 H2

H3H3 H3H4 H3H5 H3H6 H3

H4H4 H4H5 H4H6 H4

H5H5 H5H6 H5

Symmetric H6H6 H6

1

2
666666664

3
777777775
df;

in which

H1ðfÞ ¼ �yðfÞ þ y0;
H2ðfÞ ¼ xðfÞ � x0;
H3ðfÞ ¼ �1

2
y0ð � yðfÞÞ y0ð þ yðfÞ � 2yc1Þ � 1

2
x0ð � xðfÞÞ x0ð þ xðfÞ � 2xc1Þ;

H4ðfÞ ¼ yðfÞ � y0;
H5ðfÞ ¼ �xðfÞ þ x0;
H6ðfÞ ¼ 1

2
y0ð � yðfÞÞ y0ð þ yðfÞ � 2yc2Þ þ 1

2
x0ð � xðfÞÞ x0ð þ xðfÞ � 2xc2Þ:

Gauss quadrature integration can be used to obtain the actual viscosity matrix

½Cgb� ¼
H1ð1Þ H2ð1Þ H3ð1Þ H4ð1Þ H5ð1Þ H6ð1Þ 1

�H1ð�1Þ �H2ð�1Þ �H3ð�1Þ �H4ð�1Þ �H5ð�1Þ �H6ð�1Þ �1

� �
;

in which

H1ð1Þ ¼ �yp2 þ y0;
H2ð1Þ ¼ xp2 � x0;
H3ð1Þ ¼ �1

2
y0
�

� yp2
�
y0
�

þ yp2 � 2yc1
�
� 1

2
x0
�

� xp2
�
x0
�

þ xp2 � 2xc1
�
;

H4ð1Þ ¼ yp2 � y0;
H5ð1Þ ¼ �xp2 þ x0;
H6ð1Þ ¼ 1

2
y0
�

� yp2
�
y0
�

þ yp2 � 2yc2
�
þ 1

2
x0
�

� xp2
�
x0
�

þ xp2 � 2xc2
�
;

H1ð�1Þ ¼ �yp1 þ y0;

H2ð�1Þ ¼ xp1 þ x0;

H3ð�1Þ ¼ �1
2
y0
�

� yp1
�
y0
�

þ yp1 � 2yc1
�
� 1

2
x0
�

� xp1
�
x0
�

þ xp1 � 2xc1
�
;

H4ð�1Þ ¼ yp1 � y0;

H5ð�1Þ ¼ �xp1 þ x0;

H6ð�1Þ ¼ 1
2
y0
�

� yp1
�
y0
�

þ yp1 � 2yc2
�
þ 1

2
x0
�

� xp1
�
x0
�

þ xp1 � 2xc2
�
;

where xp1 ; yp1 and xp2 ; yp2 denote the coordinates of Node 1 and Node 2, respectively, as illustrated in Fig. 8.
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